LCOV - code coverage report
Current view: top level - colors/private - linear_interp.f90 (source / functions) Coverage Total Hit
Test: coverage.info Lines: 0.0 % 161 0
Test Date: 2026-01-06 18:03:11 Functions: 0.0 % 6 0

            Line data    Source code
       1              : ! ***********************************************************************
       2              : !
       3              : !   Copyright (C) 2025  Niall Miller & The MESA Team
       4              : !
       5              : !   This program is free software: you can redistribute it and/or modify
       6              : !   it under the terms of the GNU Lesser General Public License
       7              : !   as published by the Free Software Foundation,
       8              : !   either version 3 of the License, or (at your option) any later version.
       9              : !
      10              : !   This program is distributed in the hope that it will be useful,
      11              : !   but WITHOUT ANY WARRANTY; without even the implied warranty of
      12              : !   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
      13              : !   See the GNU Lesser General Public License for more details.
      14              : !
      15              : !   You should have received a copy of the GNU Lesser General Public License
      16              : !   along with this program. If not, see <https://www.gnu.org/licenses/>.
      17              : !
      18              : ! ***********************************************************************
      19              : 
      20              : ! ***********************************************************************
      21              : ! Linear interpolation module for spectral energy distributions (SEDs)
      22              : ! ***********************************************************************
      23              : 
      24              : module linear_interp
      25              :    use const_def, only: dp
      26              :    use colors_utils, only: dilute_flux
      27              :    implicit none
      28              : 
      29              :    private
      30              :    public :: construct_sed_linear, trilinear_interp
      31              : 
      32              : contains
      33              : 
      34              :    !---------------------------------------------------------------------------
      35              :    ! Main entry point: Construct a SED using linear interpolation
      36              :    !---------------------------------------------------------------------------
      37              : 
      38            0 :    subroutine construct_sed_linear(teff, log_g, metallicity, R, d, file_names, &
      39              :                                    lu_teff, lu_logg, lu_meta, stellar_model_dir, &
      40              :                                    wavelengths, fluxes)
      41              : 
      42              :       real(dp), intent(in) :: teff, log_g, metallicity, R, d
      43              :       real(dp), intent(in) :: lu_teff(:), lu_logg(:), lu_meta(:)
      44              :       character(len=*), intent(in) :: stellar_model_dir
      45              :       character(len=100), intent(in) :: file_names(:)
      46              :       real(dp), dimension(:), allocatable, intent(out) :: wavelengths, fluxes
      47              : 
      48              :       integer :: i, n_lambda, status, n_teff, n_logg, n_meta
      49            0 :       real(dp), dimension(:), allocatable :: interp_flux, diluted_flux
      50            0 :       real(dp), dimension(:, :, :, :), allocatable :: precomputed_flux_cube
      51            0 :       real(dp), dimension(:, :, :), allocatable :: flux_cube_lambda
      52              :       real(dp) :: min_flux, max_flux, mean_flux, progress_pct
      53              : 
      54              :       ! Parameter grids
      55            0 :       real(dp), allocatable :: teff_grid(:), logg_grid(:), meta_grid(:)
      56              :       character(len=256) :: bin_filename, clean_path
      57              :       logical :: file_exists
      58              : 
      59              :       ! Clean up any double slashes in the path
      60            0 :       clean_path = trim(stellar_model_dir)
      61            0 :       if (clean_path(len_trim(clean_path):len_trim(clean_path)) == '/') then
      62            0 :          bin_filename = trim(clean_path)//'flux_cube.bin'
      63              :       else
      64            0 :          bin_filename = trim(clean_path)//'/flux_cube.bin'
      65              :       end if
      66              : 
      67              :       ! Check if file exists first
      68            0 :       INQUIRE (file=bin_filename, EXIST=file_exists)
      69              : 
      70            0 :       if (.not. file_exists) then
      71            0 :          stop 'Missing required binary file for interpolation'
      72              :       end if
      73              : 
      74              :       ! Load the data from binary file
      75              :       call load_binary_data(bin_filename, teff_grid, logg_grid, meta_grid, &
      76            0 :                             wavelengths, precomputed_flux_cube, status)
      77              : 
      78            0 :       if (status /= 0) then
      79            0 :          stop 'Binary data loading error'
      80              :       end if
      81              : 
      82            0 :       n_teff = size(teff_grid)
      83            0 :       n_logg = size(logg_grid)
      84            0 :       n_meta = size(meta_grid)
      85            0 :       n_lambda = size(wavelengths)
      86              : 
      87              :       ! Allocate space for interpolated flux
      88            0 :       allocate (interp_flux(n_lambda))
      89              : 
      90              :       ! Perform trilinear interpolation for each wavelength
      91            0 :       do i = 1, n_lambda
      92              :          ! !print progress updates at regular intervals
      93              : 
      94              :          ! Extract the 3D grid for this wavelength
      95            0 :          allocate (flux_cube_lambda(n_teff, n_logg, n_meta))
      96            0 :          flux_cube_lambda = precomputed_flux_cube(:, :, :, i)
      97              : 
      98              :          ! Simple trilinear interpolation at the target parameters
      99            0 :          interp_flux(i) = trilinear_interp(teff, log_g, metallicity, &
     100            0 :                                            teff_grid, logg_grid, meta_grid, flux_cube_lambda)
     101              : 
     102              :       end do
     103              : 
     104              :       ! Calculate statistics for validation
     105              :       min_flux = minval(interp_flux)
     106              :       max_flux = maxval(interp_flux)
     107            0 :       mean_flux = sum(interp_flux)/n_lambda
     108              : 
     109              :       ! Apply distance dilution to get observed flux
     110            0 :       allocate (diluted_flux(n_lambda))
     111            0 :       call dilute_flux(interp_flux, R, d, diluted_flux)
     112            0 :       fluxes = diluted_flux
     113              : 
     114              :       ! Calculate statistics after dilution
     115              :       min_flux = minval(diluted_flux)
     116              :       max_flux = maxval(diluted_flux)
     117              :       mean_flux = sum(diluted_flux)/n_lambda
     118              : 
     119            0 :    end subroutine construct_sed_linear
     120              : 
     121              :    !---------------------------------------------------------------------------
     122              :    ! Load data from binary file
     123              :    !---------------------------------------------------------------------------
     124            0 :    subroutine load_binary_data(filename, teff_grid, logg_grid, meta_grid, &
     125              :                                wavelengths, flux_cube, status)
     126              :       character(len=*), intent(in) :: filename
     127              :       real(dp), allocatable, intent(out) :: teff_grid(:), logg_grid(:), meta_grid(:)
     128              :       real(dp), allocatable, intent(out) :: wavelengths(:)
     129              :       real(dp), allocatable, intent(out) :: flux_cube(:, :, :, :)
     130              :       integer, intent(out) :: status
     131              : 
     132              :       integer :: unit, n_teff, n_logg, n_meta, n_lambda
     133              : 
     134            0 :       unit = 99
     135            0 :       status = 0
     136              : 
     137              :       ! Open the binary file
     138            0 :       open (unit=unit, file=filename, status='OLD', ACCESS='STREAM', FORM='UNFORMATTED', iostat=status)
     139            0 :       if (status /= 0) then
     140              :          !print *, 'Error opening binary file:', trim(filename)
     141              :          return
     142              :       end if
     143              : 
     144              :       ! Read dimensions
     145            0 :       read (unit, iostat=status) n_teff, n_logg, n_meta, n_lambda
     146            0 :       if (status /= 0) then
     147              :          !print *, 'Error reading dimensions from binary file'
     148            0 :          close (unit)
     149            0 :          return
     150              :       end if
     151              : 
     152              :       ! Allocate arrays based on dimensions
     153            0 :       allocate (teff_grid(n_teff), STAT=status)
     154            0 :       if (status /= 0) then
     155              :          !print *, 'Error allocating teff_grid array'
     156            0 :          close (unit)
     157            0 :          return
     158              :       end if
     159              : 
     160            0 :       allocate (logg_grid(n_logg), STAT=status)
     161            0 :       if (status /= 0) then
     162              :          !print *, 'Error allocating logg_grid array'
     163            0 :          close (unit)
     164            0 :          return
     165              :       end if
     166              : 
     167            0 :       allocate (meta_grid(n_meta), STAT=status)
     168            0 :       if (status /= 0) then
     169              :          !print *, 'Error allocating meta_grid array'
     170            0 :          close (unit)
     171            0 :          return
     172              :       end if
     173              : 
     174            0 :       allocate (wavelengths(n_lambda), STAT=status)
     175            0 :       if (status /= 0) then
     176              :          !print *, 'Error allocating wavelengths array'
     177            0 :          close (unit)
     178            0 :          return
     179              :       end if
     180              : 
     181            0 :       allocate (flux_cube(n_teff, n_logg, n_meta, n_lambda), STAT=status)
     182            0 :       if (status /= 0) then
     183              :          !print *, 'Error allocating flux_cube array'
     184            0 :          close (unit)
     185            0 :          return
     186              :       end if
     187              : 
     188              :       ! Read grid arrays
     189            0 :       read (unit, iostat=status) teff_grid
     190            0 :       if (status /= 0) then
     191              :          !print *, 'Error reading teff_grid'
     192              :          GOTO 999  ! Cleanup and return
     193              :       end if
     194              : 
     195            0 :       read (unit, iostat=status) logg_grid
     196            0 :       if (status /= 0) then
     197              :          !print *, 'Error reading logg_grid'
     198              :          GOTO 999  ! Cleanup and return
     199              :       end if
     200              : 
     201            0 :       read (unit, iostat=status) meta_grid
     202            0 :       if (status /= 0) then
     203              :          !print *, 'Error reading meta_grid'
     204              :          GOTO 999  ! Cleanup and return
     205              :       end if
     206              : 
     207            0 :       read (unit, iostat=status) wavelengths
     208            0 :       if (status /= 0) then
     209              :          !print *, 'Error reading wavelengths'
     210              :          GOTO 999  ! Cleanup and return
     211              :       end if
     212              : 
     213              :       ! Read flux cube
     214            0 :       read (unit, iostat=status) flux_cube
     215            0 :       if (status /= 0) then
     216              :          !print *, 'Error reading flux_cube'
     217              :          GOTO 999  ! Cleanup and return
     218              :       end if
     219              : 
     220              :       ! Close file and return success
     221            0 :       close (unit)
     222            0 :       return
     223              : 
     224              : 999   CONTINUE
     225              :       ! Cleanup on error
     226            0 :       close (unit)
     227            0 :       return
     228              : 
     229              : ! After reading the grid arrays
     230              : !print *, 'Teff grid min/max:', minval(teff_grid), maxval(teff_grid)
     231              : !print *, 'logg grid min/max:', minval(logg_grid), maxval(logg_grid)
     232              : !print *, 'meta grid min/max:', minval(meta_grid), maxval(meta_grid)
     233              : 
     234              :    end subroutine load_binary_data
     235              : 
     236              :    !---------------------------------------------------------------------------
     237              :    ! Simple trilinear interpolation function
     238              :    !---------------------------------------------------------------------------
     239              : !---------------------------------------------------------------------------
     240              : ! Log-space trilinear interpolation function with normalization
     241              : !---------------------------------------------------------------------------
     242            0 :    function trilinear_interp(x_val, y_val, z_val, x_grid, y_grid, z_grid, f_values) result(f_interp)
     243              :       real(dp), intent(in) :: x_val, y_val, z_val
     244              :       real(dp), intent(in) :: x_grid(:), y_grid(:), z_grid(:)
     245              :       real(dp), intent(in) :: f_values(:, :, :)
     246              :       real(dp) :: f_interp
     247              :       ! Compute log-space result
     248              :       real(dp) :: log_result
     249              :       integer :: i_x, i_y, i_z
     250              :       real(dp) :: t_x, t_y, t_z
     251              :       real(dp) :: c000, c001, c010, c011, c100, c101, c110, c111
     252              :       real(dp) :: c00, c01, c10, c11, c0, c1
     253              :       real(dp), parameter :: tiny_value = 1.0e-10_dp
     254              : 
     255              :       ! Find containing cell and parameter values using binary search
     256              :       call find_containing_cell(x_val, y_val, z_val, x_grid, y_grid, z_grid, &
     257            0 :                                 i_x, i_y, i_z, t_x, t_y, t_z)
     258              : 
     259              :       ! Boundary safety check
     260            0 :       if (i_x < 1) i_x = 1
     261            0 :       if (i_y < 1) i_y = 1
     262            0 :       if (i_z < 1) i_z = 1
     263            0 :       if (i_x >= size(x_grid)) i_x = size(x_grid) - 1
     264            0 :       if (i_y >= size(y_grid)) i_y = size(y_grid) - 1
     265            0 :       if (i_z >= size(z_grid)) i_z = size(z_grid) - 1
     266              : 
     267              :       ! Force interpolation parameters to be in [0,1]
     268            0 :       t_x = max(0.0_dp, MIN(1.0_dp, t_x))
     269            0 :       t_y = max(0.0_dp, MIN(1.0_dp, t_y))
     270            0 :       t_z = max(0.0_dp, MIN(1.0_dp, t_z))
     271              : 
     272              :       ! Get the corners of the cube with safety checks
     273            0 :       c000 = max(tiny_value, f_values(i_x, i_y, i_z))
     274            0 :       c001 = max(tiny_value, f_values(i_x, i_y, i_z + 1))
     275            0 :       c010 = max(tiny_value, f_values(i_x, i_y + 1, i_z))
     276            0 :       c011 = max(tiny_value, f_values(i_x, i_y + 1, i_z + 1))
     277            0 :       c100 = max(tiny_value, f_values(i_x + 1, i_y, i_z))
     278            0 :       c101 = max(tiny_value, f_values(i_x + 1, i_y, i_z + 1))
     279            0 :       c110 = max(tiny_value, f_values(i_x + 1, i_y + 1, i_z))
     280            0 :       c111 = max(tiny_value, f_values(i_x + 1, i_y + 1, i_z + 1))
     281              : 
     282              :       ! Try standard linear interpolation first (safer)
     283            0 :       c00 = c000*(1.0_dp - t_x) + c100*t_x
     284            0 :       c01 = c001*(1.0_dp - t_x) + c101*t_x
     285            0 :       c10 = c010*(1.0_dp - t_x) + c110*t_x
     286            0 :       c11 = c011*(1.0_dp - t_x) + c111*t_x
     287              : 
     288            0 :       c0 = c00*(1.0_dp - t_y) + c10*t_y
     289            0 :       c1 = c01*(1.0_dp - t_y) + c11*t_y
     290              : 
     291            0 :       f_interp = c0*(1.0_dp - t_z) + c1*t_z
     292              : 
     293              :       ! If the linear result is valid and non-zero, try log space
     294            0 :       if (f_interp > tiny_value) then
     295              :          ! Perform log-space interpolation
     296            0 :          c00 = log(c000)*(1.0_dp - t_x) + log(c100)*t_x
     297            0 :          c01 = log(c001)*(1.0_dp - t_x) + log(c101)*t_x
     298            0 :          c10 = log(c010)*(1.0_dp - t_x) + log(c110)*t_x
     299            0 :          c11 = log(c011)*(1.0_dp - t_x) + log(c111)*t_x
     300              : 
     301            0 :          c0 = c00*(1.0_dp - t_y) + c10*t_y
     302            0 :          c1 = c01*(1.0_dp - t_y) + c11*t_y
     303              : 
     304            0 :          log_result = c0*(1.0_dp - t_z) + c1*t_z
     305              : 
     306              :          ! Only use the log-space result if it's valid
     307            0 :          if (log_result == log_result) then  ! NaN check
     308            0 :             f_interp = EXP(log_result)
     309              :          end if
     310              :       end if
     311              : 
     312              :       ! Final sanity check
     313            0 :       if (f_interp /= f_interp .or. f_interp <= 0.0_dp) then
     314              :          ! If we somehow still got an invalid result, use nearest neighbor
     315            0 :          call find_nearest_point(x_val, y_val, z_val, x_grid, y_grid, z_grid, i_x, i_y, i_z)
     316            0 :          f_interp = max(tiny_value, f_values(i_x, i_y, i_z))
     317              :       end if
     318            0 :    end function trilinear_interp
     319              : 
     320              :    !---------------------------------------------------------------------------
     321              :    ! Find the cell containing the interpolation point
     322              :    !---------------------------------------------------------------------------
     323            0 :    subroutine find_containing_cell(x_val, y_val, z_val, x_grid, y_grid, z_grid, &
     324              :                                    i_x, i_y, i_z, t_x, t_y, t_z)
     325              :       real(dp), intent(in) :: x_val, y_val, z_val
     326              :       real(dp), intent(in) :: x_grid(:), y_grid(:), z_grid(:)
     327              :       integer, intent(out) :: i_x, i_y, i_z
     328              :       real(dp), intent(out) :: t_x, t_y, t_z
     329              : 
     330              :       ! Find x interval
     331            0 :       call find_interval(x_grid, x_val, i_x, t_x)
     332              : 
     333              :       ! Find y interval
     334            0 :       call find_interval(y_grid, y_val, i_y, t_y)
     335              : 
     336              :       ! Find z interval
     337            0 :       call find_interval(z_grid, z_val, i_z, t_z)
     338            0 :    end subroutine find_containing_cell
     339              : 
     340              :    !---------------------------------------------------------------------------
     341              :    ! Find the interval in a sorted array containing a value
     342              :    !---------------------------------------------------------------------------
     343            0 :    subroutine find_interval(x, val, i, t)
     344              :       real(dp), intent(in) :: x(:), val
     345              :       integer, intent(out) :: i
     346              :       real(dp), intent(out) :: t
     347              : 
     348              :       integer :: n, lo, hi, mid
     349              :       logical :: dummy_axis
     350              : 
     351            0 :       n = size(x)
     352              : 
     353              :       ! Detect dummy axis
     354            0 :       dummy_axis = all(x == 0.0_dp) .or. all(x == 999.0_dp) .or. all(x == -999.0_dp)
     355              : 
     356              :       if (dummy_axis) then
     357              :          ! Collapse: use the first element of the axis, no interpolation
     358            0 :          i = 1
     359            0 :          t = 0.0_dp
     360            0 :          return
     361              :       end if
     362              : 
     363              :       ! --- ORIGINAL CODE BELOW ---
     364            0 :       if (val <= x(1)) then
     365            0 :          i = 1
     366            0 :          t = 0.0_dp
     367            0 :          return
     368            0 :       else if (val >= x(n)) then
     369            0 :          i = n - 1
     370            0 :          t = 1.0_dp
     371            0 :          return
     372              :       end if
     373              : 
     374              :       lo = 1
     375              :       hi = n
     376            0 :       do while (hi - lo > 1)
     377            0 :          mid = (lo + hi)/2
     378            0 :          if (val >= x(mid)) then
     379              :             lo = mid
     380              :          else
     381            0 :             hi = mid
     382              :          end if
     383              :       end do
     384              : 
     385            0 :       i = lo
     386            0 :       t = (val - x(i))/(x(i + 1) - x(i))
     387              :    end subroutine find_interval
     388              : 
     389              : 
     390              :    !---------------------------------------------------------------------------
     391              :    ! Find the nearest grid point
     392              :    !---------------------------------------------------------------------------
     393            0 :    subroutine find_nearest_point(x_val, y_val, z_val, x_grid, y_grid, z_grid, &
     394              :                                  i_x, i_y, i_z)
     395              :       real(dp), intent(in) :: x_val, y_val, z_val
     396              :       real(dp), intent(in) :: x_grid(:), y_grid(:), z_grid(:)
     397              :       integer, intent(out) :: i_x, i_y, i_z
     398              : 
     399              :       integer :: i
     400              :       real(dp) :: min_dist, dist
     401              : 
     402              :       ! Find nearest x grid point
     403            0 :       min_dist = abs(x_val - x_grid(1))
     404            0 :       i_x = 1
     405            0 :       do i = 2, size(x_grid)
     406            0 :          dist = abs(x_val - x_grid(i))
     407            0 :          if (dist < min_dist) then
     408            0 :             min_dist = dist
     409            0 :             i_x = i
     410              :          end if
     411              :       end do
     412              : 
     413              :       ! Find nearest y grid point
     414            0 :       min_dist = abs(y_val - y_grid(1))
     415            0 :       i_y = 1
     416            0 :       do i = 2, size(y_grid)
     417            0 :          dist = abs(y_val - y_grid(i))
     418            0 :          if (dist < min_dist) then
     419            0 :             min_dist = dist
     420            0 :             i_y = i
     421              :          end if
     422              :       end do
     423              : 
     424              :       ! Find nearest z grid point
     425            0 :       min_dist = abs(z_val - z_grid(1))
     426            0 :       i_z = 1
     427            0 :       do i = 2, size(z_grid)
     428            0 :          dist = abs(z_val - z_grid(i))
     429            0 :          if (dist < min_dist) then
     430            0 :             min_dist = dist
     431            0 :             i_z = i
     432              :          end if
     433              :       end do
     434            0 :    end subroutine find_nearest_point
     435              : 
     436              : end module linear_interp
        

Generated by: LCOV version 2.0-1