Line data Source code
1 : !-----------------------------------------------------------------------
2 : !
3 : ! This file is part of the Test Set for IVP solvers
4 : ! http://www.dm.uniba.it/~testset/
5 : !
6 : ! Medical Akzo Nobel problem
7 : ! ODE of dimension 400
8 : !
9 : ! DISCLAIMER: see
10 : ! http://www.dm.uniba.it/~testset/disclaimer.php
11 : !
12 : ! The most recent version of this source file can be found at
13 : ! http://www.dm.uniba.it/~testset/src/problems/medakzo.f
14 : !
15 : ! This is revision
16 : ! $Id: medakzo.F,v 1.3 2006/10/06 12:12:27 testset Exp $
17 : !
18 : !-----------------------------------------------------------------------
19 : module bari_medakzo
20 :
21 : implicit none
22 :
23 : contains
24 :
25 8 : subroutine medakzo_init(neqn, y, yprime, consis)
26 : integer :: neqn
27 : double precision :: y(neqn), yprime(neqn)
28 : logical :: consis
29 :
30 : integer :: j
31 :
32 1608 : do j = 1, neqn/2
33 1600 : y(2*j - 1) = 0d0
34 1608 : y(2*j) = 1d0
35 : end do
36 :
37 8 : end subroutine medakzo_init
38 : !-----------------------------------------------------------------------
39 30720 : subroutine medakzo_feval(neqn, t, y, yprime, f, ierr, rpar, ipar)
40 : integer :: neqn, ierr, ipar(*)
41 : double precision :: t, y(neqn), yprime(neqn), f(neqn), rpar(*)
42 :
43 : integer :: N, i, j
44 30720 : double precision :: zeta, dzeta, dzeta2, k, c, phi, alpha, beta, gama, dum
45 : parameter(k=100d0, c=4d0)
46 :
47 : include 'formats'
48 :
49 30720 : N = neqn/2
50 30720 : dzeta = 1d0/dble(N)
51 30720 : dzeta2 = dzeta*dzeta
52 30720 : dum = (dzeta - 1d0)*(dzeta - 1d0)/c
53 30720 : alpha = 2d0*(dzeta - 1d0)*dum/c
54 30720 : beta = dum*dum
55 :
56 30720 : if (t <= 5d0) then
57 : phi = 2d0
58 : else
59 8613 : phi = 0d0
60 : end if
61 :
62 30720 : f(1) = (phi - 2d0*y(1) + y(3))*beta/dzeta2 + alpha*(y(3) - phi)/(2d0*dzeta) - k*y(1)*y(2)
63 30720 : f(2) = -k*y(1)*y(2)
64 :
65 6113280 : do j = 2, N - 1
66 6082560 : i = 2*j - 1
67 6082560 : zeta = j*dzeta
68 6082560 : dum = (zeta - 1d0)*(zeta - 1d0)/c
69 6082560 : alpha = 2d0*(zeta - 1d0)*dum/c
70 6082560 : beta = dum*dum
71 6082560 : gama = (y(i - 2) - 2d0*y(i) + y(i + 2))*beta/dzeta2 + alpha*(y(i + 2) - y(i - 2))/(2d0*dzeta)
72 6082560 : f(i) = gama - k*y(i)*y(i + 1)
73 6082560 : i = 2*j
74 6113280 : f(i) = -k*y(i)*y(i - 1)
75 : end do
76 :
77 30720 : f(2*N - 1) = -k*y(2*N - 1)*y(2*N)
78 30720 : f(2*N) = -k*y(2*N - 1)*y(2*N)
79 :
80 30720 : end subroutine medakzo_feval
81 : !-----------------------------------------------------------------------
82 2430 : subroutine medakzo_jeval(ldim, neqn, t, y, yprime, dfdy, ierr, rpar, ipar)
83 : integer :: ldim, neqn, ierr, ipar(*)
84 : double precision :: t, y(neqn), yprime(neqn), dfdy(ldim, neqn), rpar(*)
85 :
86 : integer :: N, i, j
87 2430 : double precision :: zeta, dzeta, dzeta2, alpha, beta, k, c, dum, bz
88 : parameter(k=100d0, c=4d0)
89 :
90 974430 : do j = 1, neqn
91 5834430 : do i = 1, 5
92 5832000 : dfdy(i, j) = 0d0
93 : end do
94 : end do
95 :
96 2430 : N = neqn/2
97 2430 : dzeta = 1d0/dble(N)
98 2430 : dzeta2 = dzeta*dzeta
99 2430 : dum = (dzeta - 1d0)*(dzeta - 1d0)/c
100 2430 : alpha = 2d0*(dzeta - 1d0)*dum/c
101 2430 : beta = dum*dum
102 :
103 2430 : dfdy(3, 1) = -beta*2d0/dzeta2 - k*y(2)
104 2430 : dfdy(1, 3) = beta/dzeta2 + alpha/(2d0*dzeta)
105 2430 : dfdy(2, 2) = -k*y(1)
106 2430 : dfdy(4, 1) = -k*y(2)
107 2430 : dfdy(3, 2) = -k*y(1)
108 :
109 483570 : do j = 2, N - 1
110 481140 : i = 2*j - 1
111 481140 : zeta = j*dzeta
112 481140 : dum = (zeta - 1d0)*(zeta - 1d0)/c
113 481140 : alpha = 2d0*(zeta - 1d0)*dum/c
114 481140 : beta = dum*dum
115 481140 : bz = beta/dzeta2
116 481140 : dfdy(5, i - 2) = bz - alpha/(2d0*dzeta)
117 481140 : dfdy(3, i) = -2d0*bz - k*y(i + 1)
118 481140 : dfdy(1, i + 2) = bz + alpha/(2d0*dzeta)
119 481140 : dfdy(2, i + 1) = -k*y(i)
120 481140 : i = 2*j
121 481140 : dfdy(4, i - 1) = -k*y(i)
122 483570 : dfdy(3, i) = -k*y(i - 1)
123 : end do
124 :
125 2430 : dfdy(3, 2*N - 1) = -k*y(2*N)
126 2430 : dfdy(2, 2*N) = -k*y(2*N - 1)
127 2430 : dfdy(4, 2*N - 1) = -k*y(2*N)
128 2430 : dfdy(3, 2*N) = -k*y(2*N - 1)
129 :
130 2430 : end subroutine medakzo_jeval
131 : !-----------------------------------------------------------------------
132 8 : subroutine medakzo_solut(neqn, t, y)
133 : integer :: neqn
134 : double precision :: t, y(neqn)
135 :
136 : ! computed at Cray C90 using Cray double precision
137 : ! Solving Medical Akzo Nobel problem using PSIDE
138 : !
139 : ! User input:
140 : !
141 : ! give relative error tolerance: 1d-10
142 : ! give absolute error tolerance: 1d-10
143 : !
144 : !
145 : ! Integration characteristics:
146 : !
147 : ! number of integration steps 551
148 : ! number of accepted steps 537
149 : ! number of f evaluations 8914
150 : ! number of Jacobian evaluations 21
151 : ! number of LU decompositions 620
152 : !
153 : ! CPU-time used: 78.24 sec
154 8 : y(1) = 0.5113983840919909d-005
155 8 : y(2) = 0.1925112884312553d-143
156 8 : y(3) = 0.1027858770570419d-004
157 8 : y(4) = 0.1890518289312031d-142
158 8 : y(5) = 0.1549349862635799d-004
159 8 : y(6) = 0.1774199325357386d-142
160 8 : y(7) = 0.2075835344757462d-004
161 8 : y(8) = 0.5897341137981092d-143
162 8 : y(9) = 0.2607273610116854d-004
163 8 : y(10) = 0.1093527900908030d-143
164 8 : y(11) = 0.3143617475695002d-004
165 8 : y(12) = 0.1188834841626416d-144
166 8 : y(13) = 0.3684813884509626d-004
167 8 : y(14) = 0.9968323236025642d-147
168 8 : y(15) = 0.4230803594492533d-004
169 8 : y(16) = -0.2801994001528093d-146
170 8 : y(17) = 0.4781520853483223d-004
171 8 : y(18) = -0.7337417669341249d-147
172 8 : y(19) = 0.5336893059800053d-004
173 8 : y(20) = -0.1209033101530330d-147
174 8 : y(21) = 0.5896840407836044d-004
175 8 : y(22) = -0.1430357497530360d-148
176 8 : y(23) = 0.6461275518112516d-004
177 8 : y(24) = -0.1063952641824646d-149
178 8 : y(25) = 0.7030103051210320d-004
179 8 : y(26) = 0.7939969136126717d-152
180 8 : y(27) = 0.7603219304985662d-004
181 8 : y(28) = 0.1568246940545520d-150
182 8 : y(29) = 0.8180511794465543d-004
183 8 : y(30) = 0.4074950357924872d-150
184 8 : y(31) = 0.8761858813806752d-004
185 8 : y(32) = 0.5592746648679992d-150
186 8 : y(33) = 0.9347128979692480d-004
187 8 : y(34) = -0.5510388943414421d-151
188 8 : y(35) = 0.9936180755532036d-004
189 8 : y(36) = -0.2724738349250769d-149
190 8 : y(37) = 0.1052886195582220d-003
191 8 : y(38) = -0.9327772452398718d-149
192 8 : y(39) = 0.1112500923002360d-003
193 8 : y(40) = -0.2182885200987554d-148
194 8 : y(41) = 0.1172444752530255d-003
195 8 : y(42) = -0.4041450806475518d-148
196 8 : y(43) = 0.1232698952748828d-003
197 8 : y(44) = -0.5608157478395261d-148
198 8 : y(45) = 0.1293243507959787d-003
199 8 : y(46) = -0.2639662630908699d-148
200 8 : y(47) = 0.1354057057728661d-003
201 8 : y(48) = 0.1801866277537073d-147
202 8 : y(49) = 0.1415116834059119d-003
203 8 : y(50) = 0.8464449882759417d-147
204 8 : y(51) = 0.1476398596134615d-003
205 8 : y(52) = 0.2245234937355967d-146
206 8 : y(53) = 0.1537876562567258d-003
207 8 : y(54) = 0.3359213489153582d-146
208 8 : y(55) = 0.1599523341096154d-003
209 8 : y(56) = -0.3085721171916412d-146
210 8 : y(57) = 0.1661309855680449d-003
211 8 : y(58) = -0.4465322607423735d-145
212 8 : y(59) = 0.1723205270935920d-003
213 8 : y(60) = -0.1970925996866384d-144
214 8 : y(61) = 0.1785176913868402d-003
215 8 : y(62) = -0.6070953121563027d-144
216 8 : y(63) = 0.1847190192862588d-003
217 8 : y(64) = -0.1412011918930335d-143
218 8 : y(65) = 0.1909208513890961d-003
219 8 : y(66) = -0.2378861987352203d-143
220 8 : y(67) = 0.1971193193914910d-003
221 8 : y(68) = -0.2380432473186974d-143
222 8 : y(69) = 0.2033103371458565d-003
223 8 : y(70) = -0.6522557638254663d-145
224 8 : y(71) = 0.2094895914345677d-003
225 8 : y(72) = 0.1784305601809064d-143
226 8 : y(73) = 0.2156525324601176d-003
227 8 : y(74) = -0.1007474781780816d-142
228 8 : y(75) = 0.2217943640531935d-003
229 8 : y(76) = -0.5281511349479423d-142
230 8 : y(77) = 0.2279100336016016d-003
231 8 : y(78) = -0.1117525482975987d-141
232 8 : y(79) = 0.2339942217046434d-003
233 8 : y(80) = -0.1127916494884468d-141
234 8 : y(81) = 0.2400413315594459d-003
235 8 : y(82) = -0.1633306916231411d-142
236 8 : y(83) = 0.2460454780878912d-003
237 8 : y(84) = 0.2708874035585891d-143
238 8 : y(85) = 0.2520004768152150d-003
239 8 : y(86) = -0.2501941069702609d-142
240 8 : y(87) = 0.2578998325140575d-003
241 8 : y(88) = -0.2642308070750020d-141
242 8 : y(89) = 0.2637367276308081d-003
243 8 : y(90) = -0.3684887530751217d-139
244 8 : y(91) = 0.2695040105145025d-003
245 8 : y(92) = -0.3647274179805887d-138
246 8 : y(93) = 0.2751941834723564d-003
247 8 : y(94) = -0.1255641406397419d-137
248 8 : y(95) = 0.2807993906802854d-003
249 8 : y(96) = -0.1694257216823904d-138
250 8 : y(97) = 0.2863114059815211d-003
251 8 : y(98) = -0.1785516142939602d-136
252 8 : y(99) = 0.2917216206117258d-003
253 8 : y(100) = -0.3935939757647002d-135
254 8 : y(101) = 0.2970210308948898d-003
255 8 : y(102) = -0.2514765666933440d-134
256 8 : y(103) = 0.3022002259608294d-003
257 8 : y(104) = -0.7200873856605984d-134
258 8 : y(105) = 0.3072493755423352d-003
259 8 : y(106) = -0.7539683247227422d-134
260 8 : y(107) = 0.3121582179180383d-003
261 8 : y(108) = 0.3738577086039426d-135
262 8 : y(109) = 0.3169160480759169d-003
263 8 : y(110) = -0.2493582962172335d-131
264 8 : y(111) = 0.3215117061821543d-003
265 8 : y(112) = 0.3039632438293726d-130
266 8 : y(113) = 0.3259335664508512d-003
267 8 : y(114) = 0.5321044068586611d-128
268 8 : y(115) = 0.3301695265219917d-003
269 8 : y(116) = -0.1918129324351378d-126
270 8 : y(117) = 0.3342069974681551d-003
271 8 : y(118) = -0.1336929159252586d-124
272 8 : y(119) = 0.3380328945648600d-003
273 8 : y(120) = 0.9521748754010357d-123
274 8 : y(121) = 0.3416336289752354d-003
275 8 : y(122) = 0.1001197393324181d-120
276 8 : y(123) = 0.3449951005170561d-003
277 8 : y(124) = 0.2703860993866771d-119
278 8 : y(125) = 0.3481026916991771d-003
279 8 : y(126) = 0.4365133580297076d-119
280 8 : y(127) = 0.3509412632351946d-003
281 8 : y(128) = 0.4898111237855383d-115
282 8 : y(129) = 0.3534951512648823d-003
283 8 : y(130) = 0.1621439381962246d-112
284 8 : y(131) = 0.3557481665387581d-003
285 8 : y(132) = 0.3003220203772183d-110
286 8 : y(133) = 0.3576835958481664d-003
287 8 : y(134) = 0.5931668289615909d-108
288 8 : y(135) = 0.3592842060126915d-003
289 8 : y(136) = 0.2235590472383775d-105
290 8 : y(137) = 0.3605322507686931d-003
291 8 : y(138) = 0.1025457293602057d-102
292 8 : y(139) = 0.3614094809374544d-003
293 8 : y(140) = 0.3496613568296336d-100
294 8 : y(141) = 0.3618971582890092d-003
295 8 : y(142) = 0.4767073568395508d-098
296 8 : y(143) = 0.3619760735583436d-003
297 8 : y(144) = -0.2410784286794997d-095
298 8 : y(145) = 0.3616265691144918d-003
299 8 : y(146) = -0.9188398110576038d-093
300 8 : y(147) = 0.3608285668302233d-003
301 8 : y(148) = 0.1146623087995081d-089
302 8 : y(149) = 0.3595616017506735d-003
303 8 : y(150) = 0.1649638439865233d-086
304 8 : y(151) = 0.3578048622135169d-003
305 8 : y(152) = 0.1215140240350217d-083
306 8 : y(153) = 0.3555372371311931d-003
307 8 : y(154) = 0.7134490346394154d-081
308 8 : y(155) = 0.3527373712073181d-003
309 8 : y(156) = 0.4502515392738464d-078
310 8 : y(157) = 0.3493837289247301d-003
311 8 : y(158) = 0.7138395988310312d-075
312 8 : y(159) = 0.3454546682115489d-003
313 8 : y(160) = 0.9941693919247076d-071
314 8 : y(161) = 0.3409285247640208d-003
315 8 : y(162) = 0.2012859826753015d-066
316 8 : y(163) = 0.3357837080804970d-003
317 8 : y(164) = 0.3598261520662423d-062
318 8 : y(165) = 0.3299988103392750d-003
319 8 : y(166) = 0.5466580008990664d-058
320 8 : y(167) = 0.3235527293336597d-003
321 8 : y(168) = 0.6945384844951550d-054
322 8 : y(169) = 0.3164248067597393d-003
323 8 : y(170) = 0.7275415527806026d-050
324 8 : y(171) = 0.3085949832350532d-003
325 8 : y(172) = 0.6193143746524996d-046
326 8 : y(173) = 0.3000439715082906d-003
327 8 : y(174) = 0.4219255556214135d-042
328 8 : y(175) = 0.2907534493998412d-003
329 8 : y(176) = 0.2263678154715720d-038
330 8 : y(177) = 0.2807062740884081d-003
331 8 : y(178) = 0.9401607967545219d-035
332 8 : y(179) = 0.2698867194275612d-003
333 8 : y(180) = 0.2968231730793053d-031
334 8 : y(181) = 0.2582807380350103d-003
335 8 : y(182) = 0.6987463944434805d-028
336 8 : y(183) = 0.2458762499428408d-003
337 8 : y(184) = 0.1201641789884051d-024
338 8 : y(185) = 0.2326634596245027d-003
339 8 : y(186) = 0.1477169946829840d-021
340 8 : y(187) = 0.2186352032185982d-003
341 8 : y(188) = 0.1268462422099779d-018
342 8 : y(189) = 0.2037873277440060d-003
343 8 : y(190) = 0.7425015664001834d-016
344 8 : y(191) = 0.1881191040379240d-003
345 8 : y(192) = 0.2886826929895103d-013
346 8 : y(193) = 0.1716336750388461d-003
347 8 : y(194) = 0.7252477041900172d-011
348 8 : y(195) = 0.1543385408702044d-003
349 8 : y(196) = 0.1143390654212691d-008
350 8 : y(197) = 0.1362460820444338d-003
351 8 : y(198) = 0.1096625145716966d-006
352 8 : y(199) = 0.1173741304462833d-003
353 8 : y(200) = 0.6190822732534586d-005
354 8 : y(201) = 0.9774701310627047d-004
355 8 : y(202) = 0.1986273404756002d-003
356 8 : y(203) = 0.7740788649977313d-004
357 8 : y(204) = 0.3489773624098464d-002
358 8 : y(205) = 0.5657119003189305d-004
359 8 : y(206) = 0.3234526094359604d-001
360 8 : y(207) = 0.3643334879766658d-004
361 8 : y(208) = 0.1548747348410801d+000
362 8 : y(209) = 0.2003152841880950d-004
363 8 : y(210) = 0.4026980529594953d+000
364 8 : y(211) = 0.9608297851720770d-005
365 8 : y(212) = 0.6649744834198490d+000
366 8 : y(213) = 0.4215537698495267d-005
367 8 : y(214) = 0.8409284546320647d+000
368 8 : y(215) = 0.1753504402754791d-005
369 8 : y(216) = 0.9314946676956936d+000
370 8 : y(217) = 0.7048158429518009d-006
371 8 : y(218) = 0.9720896201631835d+000
372 8 : y(219) = 0.2760943506466737d-006
373 8 : y(220) = 0.9890204872799944d+000
374 8 : y(221) = 0.1057554501281432d-006
375 8 : y(222) = 0.9957930123519514d+000
376 8 : y(223) = 0.3965142250779033d-007
377 8 : y(224) = 0.9984246531478463d+000
378 8 : y(225) = 0.1455273204279008d-007
379 8 : y(226) = 0.9994229325942358d+000
380 8 : y(227) = 0.5226348147846279d-008
381 8 : y(228) = 0.9997932125999319d+000
382 8 : y(229) = 0.1835610545325733d-008
383 8 : y(230) = 0.9999275409325039d+000
384 8 : y(231) = 0.6301078589385454d-009
385 8 : y(232) = 0.9999751869380269d+000
386 8 : y(233) = 0.2112538351365564d-009
387 8 : y(234) = 0.9999917015131560d+000
388 8 : y(235) = 0.6912550453447044d-010
389 8 : y(236) = 0.9999972914302640d+000
390 8 : y(237) = 0.2205932132514696d-010
391 8 : y(238) = 0.9999991378543379d+000
392 8 : y(239) = 0.6860095639285670d-011
393 8 : y(240) = 0.9999997325855174d+000
394 8 : y(241) = 0.2077324462852526d-011
395 8 : y(242) = 0.9999999192384585d+000
396 8 : y(243) = 0.6120038908594393d-012
397 8 : y(244) = 0.9999999762710279d+000
398 8 : y(245) = 0.1752695518797070d-012
399 8 : y(246) = 0.9999999932230490d+000
400 8 : y(247) = 0.4875001992978682d-013
401 8 : y(248) = 0.9999999981203191d+000
402 8 : y(249) = 0.1315706848908981d-013
403 8 : y(250) = 0.9999999994941428d+000
404 8 : y(251) = 0.3442274192104633d-014
405 8 : y(252) = 0.9999999998680372d+000
406 8 : y(253) = 0.8721783456154470d-015
407 8 : y(254) = 0.9999999999666630d+000
408 8 : y(255) = 0.2137938962858872d-015
409 8 : y(256) = 0.9999999999918528d+000
410 8 : y(257) = 0.5064735930780995d-016
411 8 : y(258) = 0.9999999999980759d+000
412 8 : y(259) = 0.1158284928109727d-016
413 8 : y(260) = 0.9999999999995613d+000
414 8 : y(261) = 0.2554350586347124d-017
415 8 : y(262) = 0.9999999999999036d+000
416 8 : y(263) = 0.5425563935887811d-018
417 8 : y(264) = 0.9999999999999796d+000
418 8 : y(265) = 0.1108623976460997d-018
419 8 : y(266) = 0.9999999999999958d+000
420 8 : y(267) = 0.2176490922739810d-019
421 8 : y(268) = 0.9999999999999992d+000
422 8 : y(269) = 0.4100180074816888d-020
423 8 : y(270) = 0.9999999999999998d+000
424 8 : y(271) = 0.7401919443964595d-021
425 8 : y(272) = 0.1000000000000000d+001
426 8 : y(273) = 0.1278745657114596d-021
427 8 : y(274) = 0.1000000000000000d+001
428 8 : y(275) = 0.2111087049605767d-022
429 8 : y(276) = 0.1000000000000000d+001
430 8 : y(277) = 0.3325632734364699d-023
431 8 : y(278) = 0.1000000000000000d+001
432 8 : y(279) = 0.4991515592566292d-024
433 8 : y(280) = 0.1000000000000000d+001
434 8 : y(281) = 0.7126950428617158d-025
435 8 : y(282) = 0.1000000000000000d+001
436 8 : y(283) = 0.9664740804131475d-026
437 8 : y(284) = 0.1000000000000000d+001
438 8 : y(285) = 0.1242716896959521d-026
439 8 : y(286) = 0.1000000000000000d+001
440 8 : y(287) = 0.1512543532243458d-027
441 8 : y(288) = 0.1000000000000000d+001
442 8 : y(289) = 0.1739533019752215d-028
443 8 : y(290) = 0.1000000000000000d+001
444 8 : y(291) = 0.1886942537979667d-029
445 8 : y(292) = 0.1000000000000000d+001
446 8 : y(293) = 0.1926965705022792d-030
447 8 : y(294) = 0.1000000000000000d+001
448 8 : y(295) = 0.1849021812823421d-031
449 8 : y(296) = 0.1000000000000000d+001
450 8 : y(297) = 0.1663798767415642d-032
451 8 : y(298) = 0.1000000000000000d+001
452 8 : y(299) = 0.1401076830818626d-033
453 8 : y(300) = 0.1000000000000000d+001
454 8 : y(301) = 0.1101818149402153d-034
455 8 : y(302) = 0.1000000000000000d+001
456 8 : y(303) = 0.8074224739509168d-036
457 8 : y(304) = 0.1000000000000000d+001
458 8 : y(305) = 0.5501249196662931d-037
459 8 : y(306) = 0.1000000000000000d+001
460 8 : y(307) = 0.3476859813132770d-038
461 8 : y(308) = 0.1000000000000000d+001
462 8 : y(309) = 0.2033489290876775d-039
463 8 : y(310) = 0.1000000000000000d+001
464 8 : y(311) = 0.1097880013869247d-040
465 8 : y(312) = 0.1000000000000000d+001
466 8 : y(313) = 0.5457825200381417d-042
467 8 : y(314) = 0.1000000000000000d+001
468 8 : y(315) = 0.2491675366427318d-043
469 8 : y(316) = 0.1000000000000000d+001
470 8 : y(317) = 0.1041801880291617d-044
471 8 : y(318) = 0.1000000000000000d+001
472 8 : y(319) = 0.3978066491064419d-046
473 8 : y(320) = 0.1000000000000000d+001
474 8 : y(321) = 0.1383174699098532d-047
475 8 : y(322) = 0.1000000000000000d+001
476 8 : y(323) = 0.4365911791079500d-049
477 8 : y(324) = 0.1000000000000000d+001
478 8 : y(325) = 0.1247057764661705d-050
479 8 : y(326) = 0.1000000000000000d+001
480 8 : y(327) = 0.3212728839963712d-052
481 8 : y(328) = 0.1000000000000000d+001
482 8 : y(329) = 0.7439366703571565d-054
483 8 : y(330) = 0.1000000000000000d+001
484 8 : y(331) = 0.1542770387822259d-055
485 8 : y(332) = 0.1000000000000000d+001
486 8 : y(333) = 0.2854454245592573d-057
487 8 : y(334) = 0.1000000000000000d+001
488 8 : y(335) = 0.4693220411250150d-059
489 8 : y(336) = 0.1000000000000000d+001
490 8 : y(337) = 0.6828458274546624d-061
491 8 : y(338) = 0.1000000000000000d+001
492 8 : y(339) = 0.8752952529541412d-063
493 8 : y(340) = 0.1000000000000000d+001
494 8 : y(341) = 0.9838541433761416d-065
495 8 : y(342) = 0.1000000000000000d+001
496 8 : y(343) = 0.9649177728609193d-067
497 8 : y(344) = 0.1000000000000000d+001
498 8 : y(345) = 0.8213596936190817d-069
499 8 : y(346) = 0.1000000000000000d+001
500 8 : y(347) = 0.6033986647865674d-071
501 8 : y(348) = 0.1000000000000000d+001
502 8 : y(349) = 0.3802531117966294d-073
503 8 : y(350) = 0.1000000000000000d+001
504 8 : y(351) = 0.2042261117698575d-075
505 8 : y(352) = 0.1000000000000000d+001
506 8 : y(353) = 0.9282595096128614d-078
507 8 : y(354) = 0.1000000000000000d+001
508 8 : y(355) = 0.3543587864454877d-080
509 8 : y(356) = 0.1000000000000000d+001
510 8 : y(357) = 0.1126779423370979d-082
511 8 : y(358) = 0.1000000000000000d+001
512 8 : y(359) = 0.2957534367766753d-085
513 8 : y(360) = 0.1000000000000000d+001
514 8 : y(361) = 0.6344600529877694d-088
515 8 : y(362) = 0.1000000000000000d+001
516 8 : y(363) = 0.1100279075462365d-090
517 8 : y(364) = 0.1000000000000000d+001
518 8 : y(365) = 0.1523845293461783d-093
519 8 : y(366) = 0.1000000000000000d+001
520 8 : y(367) = 0.1662696161555950d-096
521 8 : y(368) = 0.1000000000000000d+001
522 8 : y(369) = 0.1407578290673998d-099
523 8 : y(370) = 0.1000000000000000d+001
524 8 : y(371) = 0.9086150803567186d-103
525 8 : y(372) = 0.1000000000000000d+001
526 8 : y(373) = 0.4384339596163745d-106
527 8 : y(374) = 0.1000000000000000d+001
528 8 : y(375) = 0.1545482064392824d-109
529 8 : y(376) = 0.1000000000000000d+001
530 8 : y(377) = 0.3874172613928345d-113
531 8 : y(378) = 0.1000000000000000d+001
532 8 : y(379) = 0.6689452219441953d-117
533 8 : y(380) = 0.1000000000000000d+001
534 8 : y(381) = 0.7655680935317283d-121
535 8 : y(382) = 0.1000000000000000d+001
536 8 : y(383) = 0.5538543899545850d-125
537 8 : y(384) = 0.1000000000000000d+001
538 8 : y(385) = 0.2386173886563501d-129
539 8 : y(386) = 0.1000000000000000d+001
540 8 : y(387) = 0.5664887497790931d-134
541 8 : y(388) = 0.1000000000000000d+001
542 8 : y(389) = 0.6671124967149171d-139
543 8 : y(390) = 0.1000000000000000d+001
544 8 : y(391) = 0.3351973480286951d-144
545 8 : y(392) = 0.1000000000000000d+001
546 8 : y(393) = 0.5684315818559200d-150
547 8 : y(394) = 0.1000000000000000d+001
548 8 : y(395) = 0.2142121793294590d-156
549 8 : y(396) = 0.1000000000000000d+001
550 8 : y(397) = 0.6727117900187205d-164
551 8 : y(398) = 0.1000000000000000d+001
552 8 : y(399) = 0.0000000000000000d+000
553 8 : y(400) = 0.1000000000000000d+001
554 :
555 8 : end subroutine medakzo_solut
556 :
557 : end module bari_medakzo
|