LCOV - code coverage report
Current view: top level - num/test/src - bari_medakzo.f90 (source / functions) Coverage Total Hit
Test: coverage.info Lines: 100.0 % 467 467
Test Date: 2025-05-08 18:23:42 Functions: 100.0 % 4 4

            Line data    Source code
       1              : !-----------------------------------------------------------------------
       2              : !
       3              : !     This file is part of the Test Set for IVP solvers
       4              : !     http://www.dm.uniba.it/~testset/
       5              : !
       6              : !        Medical Akzo Nobel problem
       7              : !        ODE of dimension 400
       8              : !
       9              : !     DISCLAIMER: see
      10              : !     http://www.dm.uniba.it/~testset/disclaimer.php
      11              : !
      12              : !     The most recent version of this source file can be found at
      13              : !     http://www.dm.uniba.it/~testset/src/problems/medakzo.f
      14              : !
      15              : !     This is revision
      16              : !     $Id: medakzo.F,v 1.3 2006/10/06 12:12:27 testset Exp $
      17              : !
      18              : !-----------------------------------------------------------------------
      19              : module bari_medakzo
      20              : 
      21              :    implicit none
      22              : 
      23              : contains
      24              : 
      25            8 :    subroutine medakzo_init(neqn, y, yprime, consis)
      26              :       integer :: neqn
      27              :       double precision :: y(neqn), yprime(neqn)
      28              :       logical :: consis
      29              : 
      30              :       integer :: j
      31              : 
      32         1608 :       do j = 1, neqn/2
      33         1600 :          y(2*j - 1) = 0d0
      34         1608 :          y(2*j) = 1d0
      35              :       end do
      36              : 
      37            8 :    end subroutine medakzo_init
      38              : !-----------------------------------------------------------------------
      39        30720 :    subroutine medakzo_feval(neqn, t, y, yprime, f, ierr, rpar, ipar)
      40              :       integer :: neqn, ierr, ipar(*)
      41              :       double precision :: t, y(neqn), yprime(neqn), f(neqn), rpar(*)
      42              : 
      43              :       integer :: N, i, j
      44        30720 :       double precision :: zeta, dzeta, dzeta2, k, c, phi, alpha, beta, gama, dum
      45              :       parameter(k=100d0, c=4d0)
      46              : 
      47              :       include 'formats'
      48              : 
      49        30720 :       N = neqn/2
      50        30720 :       dzeta = 1d0/dble(N)
      51        30720 :       dzeta2 = dzeta*dzeta
      52        30720 :       dum = (dzeta - 1d0)*(dzeta - 1d0)/c
      53        30720 :       alpha = 2d0*(dzeta - 1d0)*dum/c
      54        30720 :       beta = dum*dum
      55              : 
      56        30720 :       if (t <= 5d0) then
      57              :          phi = 2d0
      58              :       else
      59         8613 :          phi = 0d0
      60              :       end if
      61              : 
      62        30720 :       f(1) = (phi - 2d0*y(1) + y(3))*beta/dzeta2 + alpha*(y(3) - phi)/(2d0*dzeta) - k*y(1)*y(2)
      63        30720 :       f(2) = -k*y(1)*y(2)
      64              : 
      65      6113280 :       do j = 2, N - 1
      66      6082560 :          i = 2*j - 1
      67      6082560 :          zeta = j*dzeta
      68      6082560 :          dum = (zeta - 1d0)*(zeta - 1d0)/c
      69      6082560 :          alpha = 2d0*(zeta - 1d0)*dum/c
      70      6082560 :          beta = dum*dum
      71      6082560 :          gama = (y(i - 2) - 2d0*y(i) + y(i + 2))*beta/dzeta2 + alpha*(y(i + 2) - y(i - 2))/(2d0*dzeta)
      72      6082560 :          f(i) = gama - k*y(i)*y(i + 1)
      73      6082560 :          i = 2*j
      74      6113280 :          f(i) = -k*y(i)*y(i - 1)
      75              :       end do
      76              : 
      77        30720 :       f(2*N - 1) = -k*y(2*N - 1)*y(2*N)
      78        30720 :       f(2*N) = -k*y(2*N - 1)*y(2*N)
      79              : 
      80        30720 :    end subroutine medakzo_feval
      81              : !-----------------------------------------------------------------------
      82         2430 :    subroutine medakzo_jeval(ldim, neqn, t, y, yprime, dfdy, ierr, rpar, ipar)
      83              :       integer :: ldim, neqn, ierr, ipar(*)
      84              :       double precision :: t, y(neqn), yprime(neqn), dfdy(ldim, neqn), rpar(*)
      85              : 
      86              :       integer :: N, i, j
      87         2430 :       double precision :: zeta, dzeta, dzeta2, alpha, beta, k, c, dum, bz
      88              :       parameter(k=100d0, c=4d0)
      89              : 
      90       974430 :       do j = 1, neqn
      91      5834430 :          do i = 1, 5
      92      5832000 :             dfdy(i, j) = 0d0
      93              :          end do
      94              :       end do
      95              : 
      96         2430 :       N = neqn/2
      97         2430 :       dzeta = 1d0/dble(N)
      98         2430 :       dzeta2 = dzeta*dzeta
      99         2430 :       dum = (dzeta - 1d0)*(dzeta - 1d0)/c
     100         2430 :       alpha = 2d0*(dzeta - 1d0)*dum/c
     101         2430 :       beta = dum*dum
     102              : 
     103         2430 :       dfdy(3, 1) = -beta*2d0/dzeta2 - k*y(2)
     104         2430 :       dfdy(1, 3) = beta/dzeta2 + alpha/(2d0*dzeta)
     105         2430 :       dfdy(2, 2) = -k*y(1)
     106         2430 :       dfdy(4, 1) = -k*y(2)
     107         2430 :       dfdy(3, 2) = -k*y(1)
     108              : 
     109       483570 :       do j = 2, N - 1
     110       481140 :          i = 2*j - 1
     111       481140 :          zeta = j*dzeta
     112       481140 :          dum = (zeta - 1d0)*(zeta - 1d0)/c
     113       481140 :          alpha = 2d0*(zeta - 1d0)*dum/c
     114       481140 :          beta = dum*dum
     115       481140 :          bz = beta/dzeta2
     116       481140 :          dfdy(5, i - 2) = bz - alpha/(2d0*dzeta)
     117       481140 :          dfdy(3, i) = -2d0*bz - k*y(i + 1)
     118       481140 :          dfdy(1, i + 2) = bz + alpha/(2d0*dzeta)
     119       481140 :          dfdy(2, i + 1) = -k*y(i)
     120       481140 :          i = 2*j
     121       481140 :          dfdy(4, i - 1) = -k*y(i)
     122       483570 :          dfdy(3, i) = -k*y(i - 1)
     123              :       end do
     124              : 
     125         2430 :       dfdy(3, 2*N - 1) = -k*y(2*N)
     126         2430 :       dfdy(2, 2*N) = -k*y(2*N - 1)
     127         2430 :       dfdy(4, 2*N - 1) = -k*y(2*N)
     128         2430 :       dfdy(3, 2*N) = -k*y(2*N - 1)
     129              : 
     130         2430 :    end subroutine medakzo_jeval
     131              : !-----------------------------------------------------------------------
     132            8 :    subroutine medakzo_solut(neqn, t, y)
     133              :       integer :: neqn
     134              :       double precision :: t, y(neqn)
     135              : 
     136              : ! computed at Cray C90 using Cray double precision
     137              : ! Solving Medical Akzo Nobel problem using PSIDE
     138              : !
     139              : ! User input:
     140              : !
     141              : ! give relative error tolerance: 1d-10
     142              : ! give absolute error tolerance: 1d-10
     143              : !
     144              : !
     145              : ! Integration characteristics:
     146              : !
     147              : !    number of integration steps         551
     148              : !    number of accepted steps            537
     149              : !    number of f evaluations            8914
     150              : !    number of Jacobian evaluations       21
     151              : !    number of LU decompositions         620
     152              : !
     153              : ! CPU-time used:                          78.24 sec
     154            8 :       y(1) = 0.5113983840919909d-005
     155            8 :       y(2) = 0.1925112884312553d-143
     156            8 :       y(3) = 0.1027858770570419d-004
     157            8 :       y(4) = 0.1890518289312031d-142
     158            8 :       y(5) = 0.1549349862635799d-004
     159            8 :       y(6) = 0.1774199325357386d-142
     160            8 :       y(7) = 0.2075835344757462d-004
     161            8 :       y(8) = 0.5897341137981092d-143
     162            8 :       y(9) = 0.2607273610116854d-004
     163            8 :       y(10) = 0.1093527900908030d-143
     164            8 :       y(11) = 0.3143617475695002d-004
     165            8 :       y(12) = 0.1188834841626416d-144
     166            8 :       y(13) = 0.3684813884509626d-004
     167            8 :       y(14) = 0.9968323236025642d-147
     168            8 :       y(15) = 0.4230803594492533d-004
     169            8 :       y(16) = -0.2801994001528093d-146
     170            8 :       y(17) = 0.4781520853483223d-004
     171            8 :       y(18) = -0.7337417669341249d-147
     172            8 :       y(19) = 0.5336893059800053d-004
     173            8 :       y(20) = -0.1209033101530330d-147
     174            8 :       y(21) = 0.5896840407836044d-004
     175            8 :       y(22) = -0.1430357497530360d-148
     176            8 :       y(23) = 0.6461275518112516d-004
     177            8 :       y(24) = -0.1063952641824646d-149
     178            8 :       y(25) = 0.7030103051210320d-004
     179            8 :       y(26) = 0.7939969136126717d-152
     180            8 :       y(27) = 0.7603219304985662d-004
     181            8 :       y(28) = 0.1568246940545520d-150
     182            8 :       y(29) = 0.8180511794465543d-004
     183            8 :       y(30) = 0.4074950357924872d-150
     184            8 :       y(31) = 0.8761858813806752d-004
     185            8 :       y(32) = 0.5592746648679992d-150
     186            8 :       y(33) = 0.9347128979692480d-004
     187            8 :       y(34) = -0.5510388943414421d-151
     188            8 :       y(35) = 0.9936180755532036d-004
     189            8 :       y(36) = -0.2724738349250769d-149
     190            8 :       y(37) = 0.1052886195582220d-003
     191            8 :       y(38) = -0.9327772452398718d-149
     192            8 :       y(39) = 0.1112500923002360d-003
     193            8 :       y(40) = -0.2182885200987554d-148
     194            8 :       y(41) = 0.1172444752530255d-003
     195            8 :       y(42) = -0.4041450806475518d-148
     196            8 :       y(43) = 0.1232698952748828d-003
     197            8 :       y(44) = -0.5608157478395261d-148
     198            8 :       y(45) = 0.1293243507959787d-003
     199            8 :       y(46) = -0.2639662630908699d-148
     200            8 :       y(47) = 0.1354057057728661d-003
     201            8 :       y(48) = 0.1801866277537073d-147
     202            8 :       y(49) = 0.1415116834059119d-003
     203            8 :       y(50) = 0.8464449882759417d-147
     204            8 :       y(51) = 0.1476398596134615d-003
     205            8 :       y(52) = 0.2245234937355967d-146
     206            8 :       y(53) = 0.1537876562567258d-003
     207            8 :       y(54) = 0.3359213489153582d-146
     208            8 :       y(55) = 0.1599523341096154d-003
     209            8 :       y(56) = -0.3085721171916412d-146
     210            8 :       y(57) = 0.1661309855680449d-003
     211            8 :       y(58) = -0.4465322607423735d-145
     212            8 :       y(59) = 0.1723205270935920d-003
     213            8 :       y(60) = -0.1970925996866384d-144
     214            8 :       y(61) = 0.1785176913868402d-003
     215            8 :       y(62) = -0.6070953121563027d-144
     216            8 :       y(63) = 0.1847190192862588d-003
     217            8 :       y(64) = -0.1412011918930335d-143
     218            8 :       y(65) = 0.1909208513890961d-003
     219            8 :       y(66) = -0.2378861987352203d-143
     220            8 :       y(67) = 0.1971193193914910d-003
     221            8 :       y(68) = -0.2380432473186974d-143
     222            8 :       y(69) = 0.2033103371458565d-003
     223            8 :       y(70) = -0.6522557638254663d-145
     224            8 :       y(71) = 0.2094895914345677d-003
     225            8 :       y(72) = 0.1784305601809064d-143
     226            8 :       y(73) = 0.2156525324601176d-003
     227            8 :       y(74) = -0.1007474781780816d-142
     228            8 :       y(75) = 0.2217943640531935d-003
     229            8 :       y(76) = -0.5281511349479423d-142
     230            8 :       y(77) = 0.2279100336016016d-003
     231            8 :       y(78) = -0.1117525482975987d-141
     232            8 :       y(79) = 0.2339942217046434d-003
     233            8 :       y(80) = -0.1127916494884468d-141
     234            8 :       y(81) = 0.2400413315594459d-003
     235            8 :       y(82) = -0.1633306916231411d-142
     236            8 :       y(83) = 0.2460454780878912d-003
     237            8 :       y(84) = 0.2708874035585891d-143
     238            8 :       y(85) = 0.2520004768152150d-003
     239            8 :       y(86) = -0.2501941069702609d-142
     240            8 :       y(87) = 0.2578998325140575d-003
     241            8 :       y(88) = -0.2642308070750020d-141
     242            8 :       y(89) = 0.2637367276308081d-003
     243            8 :       y(90) = -0.3684887530751217d-139
     244            8 :       y(91) = 0.2695040105145025d-003
     245            8 :       y(92) = -0.3647274179805887d-138
     246            8 :       y(93) = 0.2751941834723564d-003
     247            8 :       y(94) = -0.1255641406397419d-137
     248            8 :       y(95) = 0.2807993906802854d-003
     249            8 :       y(96) = -0.1694257216823904d-138
     250            8 :       y(97) = 0.2863114059815211d-003
     251            8 :       y(98) = -0.1785516142939602d-136
     252            8 :       y(99) = 0.2917216206117258d-003
     253            8 :       y(100) = -0.3935939757647002d-135
     254            8 :       y(101) = 0.2970210308948898d-003
     255            8 :       y(102) = -0.2514765666933440d-134
     256            8 :       y(103) = 0.3022002259608294d-003
     257            8 :       y(104) = -0.7200873856605984d-134
     258            8 :       y(105) = 0.3072493755423352d-003
     259            8 :       y(106) = -0.7539683247227422d-134
     260            8 :       y(107) = 0.3121582179180383d-003
     261            8 :       y(108) = 0.3738577086039426d-135
     262            8 :       y(109) = 0.3169160480759169d-003
     263            8 :       y(110) = -0.2493582962172335d-131
     264            8 :       y(111) = 0.3215117061821543d-003
     265            8 :       y(112) = 0.3039632438293726d-130
     266            8 :       y(113) = 0.3259335664508512d-003
     267            8 :       y(114) = 0.5321044068586611d-128
     268            8 :       y(115) = 0.3301695265219917d-003
     269            8 :       y(116) = -0.1918129324351378d-126
     270            8 :       y(117) = 0.3342069974681551d-003
     271            8 :       y(118) = -0.1336929159252586d-124
     272            8 :       y(119) = 0.3380328945648600d-003
     273            8 :       y(120) = 0.9521748754010357d-123
     274            8 :       y(121) = 0.3416336289752354d-003
     275            8 :       y(122) = 0.1001197393324181d-120
     276            8 :       y(123) = 0.3449951005170561d-003
     277            8 :       y(124) = 0.2703860993866771d-119
     278            8 :       y(125) = 0.3481026916991771d-003
     279            8 :       y(126) = 0.4365133580297076d-119
     280            8 :       y(127) = 0.3509412632351946d-003
     281            8 :       y(128) = 0.4898111237855383d-115
     282            8 :       y(129) = 0.3534951512648823d-003
     283            8 :       y(130) = 0.1621439381962246d-112
     284            8 :       y(131) = 0.3557481665387581d-003
     285            8 :       y(132) = 0.3003220203772183d-110
     286            8 :       y(133) = 0.3576835958481664d-003
     287            8 :       y(134) = 0.5931668289615909d-108
     288            8 :       y(135) = 0.3592842060126915d-003
     289            8 :       y(136) = 0.2235590472383775d-105
     290            8 :       y(137) = 0.3605322507686931d-003
     291            8 :       y(138) = 0.1025457293602057d-102
     292            8 :       y(139) = 0.3614094809374544d-003
     293            8 :       y(140) = 0.3496613568296336d-100
     294            8 :       y(141) = 0.3618971582890092d-003
     295            8 :       y(142) = 0.4767073568395508d-098
     296            8 :       y(143) = 0.3619760735583436d-003
     297            8 :       y(144) = -0.2410784286794997d-095
     298            8 :       y(145) = 0.3616265691144918d-003
     299            8 :       y(146) = -0.9188398110576038d-093
     300            8 :       y(147) = 0.3608285668302233d-003
     301            8 :       y(148) = 0.1146623087995081d-089
     302            8 :       y(149) = 0.3595616017506735d-003
     303            8 :       y(150) = 0.1649638439865233d-086
     304            8 :       y(151) = 0.3578048622135169d-003
     305            8 :       y(152) = 0.1215140240350217d-083
     306            8 :       y(153) = 0.3555372371311931d-003
     307            8 :       y(154) = 0.7134490346394154d-081
     308            8 :       y(155) = 0.3527373712073181d-003
     309            8 :       y(156) = 0.4502515392738464d-078
     310            8 :       y(157) = 0.3493837289247301d-003
     311            8 :       y(158) = 0.7138395988310312d-075
     312            8 :       y(159) = 0.3454546682115489d-003
     313            8 :       y(160) = 0.9941693919247076d-071
     314            8 :       y(161) = 0.3409285247640208d-003
     315            8 :       y(162) = 0.2012859826753015d-066
     316            8 :       y(163) = 0.3357837080804970d-003
     317            8 :       y(164) = 0.3598261520662423d-062
     318            8 :       y(165) = 0.3299988103392750d-003
     319            8 :       y(166) = 0.5466580008990664d-058
     320            8 :       y(167) = 0.3235527293336597d-003
     321            8 :       y(168) = 0.6945384844951550d-054
     322            8 :       y(169) = 0.3164248067597393d-003
     323            8 :       y(170) = 0.7275415527806026d-050
     324            8 :       y(171) = 0.3085949832350532d-003
     325            8 :       y(172) = 0.6193143746524996d-046
     326            8 :       y(173) = 0.3000439715082906d-003
     327            8 :       y(174) = 0.4219255556214135d-042
     328            8 :       y(175) = 0.2907534493998412d-003
     329            8 :       y(176) = 0.2263678154715720d-038
     330            8 :       y(177) = 0.2807062740884081d-003
     331            8 :       y(178) = 0.9401607967545219d-035
     332            8 :       y(179) = 0.2698867194275612d-003
     333            8 :       y(180) = 0.2968231730793053d-031
     334            8 :       y(181) = 0.2582807380350103d-003
     335            8 :       y(182) = 0.6987463944434805d-028
     336            8 :       y(183) = 0.2458762499428408d-003
     337            8 :       y(184) = 0.1201641789884051d-024
     338            8 :       y(185) = 0.2326634596245027d-003
     339            8 :       y(186) = 0.1477169946829840d-021
     340            8 :       y(187) = 0.2186352032185982d-003
     341            8 :       y(188) = 0.1268462422099779d-018
     342            8 :       y(189) = 0.2037873277440060d-003
     343            8 :       y(190) = 0.7425015664001834d-016
     344            8 :       y(191) = 0.1881191040379240d-003
     345            8 :       y(192) = 0.2886826929895103d-013
     346            8 :       y(193) = 0.1716336750388461d-003
     347            8 :       y(194) = 0.7252477041900172d-011
     348            8 :       y(195) = 0.1543385408702044d-003
     349            8 :       y(196) = 0.1143390654212691d-008
     350            8 :       y(197) = 0.1362460820444338d-003
     351            8 :       y(198) = 0.1096625145716966d-006
     352            8 :       y(199) = 0.1173741304462833d-003
     353            8 :       y(200) = 0.6190822732534586d-005
     354            8 :       y(201) = 0.9774701310627047d-004
     355            8 :       y(202) = 0.1986273404756002d-003
     356            8 :       y(203) = 0.7740788649977313d-004
     357            8 :       y(204) = 0.3489773624098464d-002
     358            8 :       y(205) = 0.5657119003189305d-004
     359            8 :       y(206) = 0.3234526094359604d-001
     360            8 :       y(207) = 0.3643334879766658d-004
     361            8 :       y(208) = 0.1548747348410801d+000
     362            8 :       y(209) = 0.2003152841880950d-004
     363            8 :       y(210) = 0.4026980529594953d+000
     364            8 :       y(211) = 0.9608297851720770d-005
     365            8 :       y(212) = 0.6649744834198490d+000
     366            8 :       y(213) = 0.4215537698495267d-005
     367            8 :       y(214) = 0.8409284546320647d+000
     368            8 :       y(215) = 0.1753504402754791d-005
     369            8 :       y(216) = 0.9314946676956936d+000
     370            8 :       y(217) = 0.7048158429518009d-006
     371            8 :       y(218) = 0.9720896201631835d+000
     372            8 :       y(219) = 0.2760943506466737d-006
     373            8 :       y(220) = 0.9890204872799944d+000
     374            8 :       y(221) = 0.1057554501281432d-006
     375            8 :       y(222) = 0.9957930123519514d+000
     376            8 :       y(223) = 0.3965142250779033d-007
     377            8 :       y(224) = 0.9984246531478463d+000
     378            8 :       y(225) = 0.1455273204279008d-007
     379            8 :       y(226) = 0.9994229325942358d+000
     380            8 :       y(227) = 0.5226348147846279d-008
     381            8 :       y(228) = 0.9997932125999319d+000
     382            8 :       y(229) = 0.1835610545325733d-008
     383            8 :       y(230) = 0.9999275409325039d+000
     384            8 :       y(231) = 0.6301078589385454d-009
     385            8 :       y(232) = 0.9999751869380269d+000
     386            8 :       y(233) = 0.2112538351365564d-009
     387            8 :       y(234) = 0.9999917015131560d+000
     388            8 :       y(235) = 0.6912550453447044d-010
     389            8 :       y(236) = 0.9999972914302640d+000
     390            8 :       y(237) = 0.2205932132514696d-010
     391            8 :       y(238) = 0.9999991378543379d+000
     392            8 :       y(239) = 0.6860095639285670d-011
     393            8 :       y(240) = 0.9999997325855174d+000
     394            8 :       y(241) = 0.2077324462852526d-011
     395            8 :       y(242) = 0.9999999192384585d+000
     396            8 :       y(243) = 0.6120038908594393d-012
     397            8 :       y(244) = 0.9999999762710279d+000
     398            8 :       y(245) = 0.1752695518797070d-012
     399            8 :       y(246) = 0.9999999932230490d+000
     400            8 :       y(247) = 0.4875001992978682d-013
     401            8 :       y(248) = 0.9999999981203191d+000
     402            8 :       y(249) = 0.1315706848908981d-013
     403            8 :       y(250) = 0.9999999994941428d+000
     404            8 :       y(251) = 0.3442274192104633d-014
     405            8 :       y(252) = 0.9999999998680372d+000
     406            8 :       y(253) = 0.8721783456154470d-015
     407            8 :       y(254) = 0.9999999999666630d+000
     408            8 :       y(255) = 0.2137938962858872d-015
     409            8 :       y(256) = 0.9999999999918528d+000
     410            8 :       y(257) = 0.5064735930780995d-016
     411            8 :       y(258) = 0.9999999999980759d+000
     412            8 :       y(259) = 0.1158284928109727d-016
     413            8 :       y(260) = 0.9999999999995613d+000
     414            8 :       y(261) = 0.2554350586347124d-017
     415            8 :       y(262) = 0.9999999999999036d+000
     416            8 :       y(263) = 0.5425563935887811d-018
     417            8 :       y(264) = 0.9999999999999796d+000
     418            8 :       y(265) = 0.1108623976460997d-018
     419            8 :       y(266) = 0.9999999999999958d+000
     420            8 :       y(267) = 0.2176490922739810d-019
     421            8 :       y(268) = 0.9999999999999992d+000
     422            8 :       y(269) = 0.4100180074816888d-020
     423            8 :       y(270) = 0.9999999999999998d+000
     424            8 :       y(271) = 0.7401919443964595d-021
     425            8 :       y(272) = 0.1000000000000000d+001
     426            8 :       y(273) = 0.1278745657114596d-021
     427            8 :       y(274) = 0.1000000000000000d+001
     428            8 :       y(275) = 0.2111087049605767d-022
     429            8 :       y(276) = 0.1000000000000000d+001
     430            8 :       y(277) = 0.3325632734364699d-023
     431            8 :       y(278) = 0.1000000000000000d+001
     432            8 :       y(279) = 0.4991515592566292d-024
     433            8 :       y(280) = 0.1000000000000000d+001
     434            8 :       y(281) = 0.7126950428617158d-025
     435            8 :       y(282) = 0.1000000000000000d+001
     436            8 :       y(283) = 0.9664740804131475d-026
     437            8 :       y(284) = 0.1000000000000000d+001
     438            8 :       y(285) = 0.1242716896959521d-026
     439            8 :       y(286) = 0.1000000000000000d+001
     440            8 :       y(287) = 0.1512543532243458d-027
     441            8 :       y(288) = 0.1000000000000000d+001
     442            8 :       y(289) = 0.1739533019752215d-028
     443            8 :       y(290) = 0.1000000000000000d+001
     444            8 :       y(291) = 0.1886942537979667d-029
     445            8 :       y(292) = 0.1000000000000000d+001
     446            8 :       y(293) = 0.1926965705022792d-030
     447            8 :       y(294) = 0.1000000000000000d+001
     448            8 :       y(295) = 0.1849021812823421d-031
     449            8 :       y(296) = 0.1000000000000000d+001
     450            8 :       y(297) = 0.1663798767415642d-032
     451            8 :       y(298) = 0.1000000000000000d+001
     452            8 :       y(299) = 0.1401076830818626d-033
     453            8 :       y(300) = 0.1000000000000000d+001
     454            8 :       y(301) = 0.1101818149402153d-034
     455            8 :       y(302) = 0.1000000000000000d+001
     456            8 :       y(303) = 0.8074224739509168d-036
     457            8 :       y(304) = 0.1000000000000000d+001
     458            8 :       y(305) = 0.5501249196662931d-037
     459            8 :       y(306) = 0.1000000000000000d+001
     460            8 :       y(307) = 0.3476859813132770d-038
     461            8 :       y(308) = 0.1000000000000000d+001
     462            8 :       y(309) = 0.2033489290876775d-039
     463            8 :       y(310) = 0.1000000000000000d+001
     464            8 :       y(311) = 0.1097880013869247d-040
     465            8 :       y(312) = 0.1000000000000000d+001
     466            8 :       y(313) = 0.5457825200381417d-042
     467            8 :       y(314) = 0.1000000000000000d+001
     468            8 :       y(315) = 0.2491675366427318d-043
     469            8 :       y(316) = 0.1000000000000000d+001
     470            8 :       y(317) = 0.1041801880291617d-044
     471            8 :       y(318) = 0.1000000000000000d+001
     472            8 :       y(319) = 0.3978066491064419d-046
     473            8 :       y(320) = 0.1000000000000000d+001
     474            8 :       y(321) = 0.1383174699098532d-047
     475            8 :       y(322) = 0.1000000000000000d+001
     476            8 :       y(323) = 0.4365911791079500d-049
     477            8 :       y(324) = 0.1000000000000000d+001
     478            8 :       y(325) = 0.1247057764661705d-050
     479            8 :       y(326) = 0.1000000000000000d+001
     480            8 :       y(327) = 0.3212728839963712d-052
     481            8 :       y(328) = 0.1000000000000000d+001
     482            8 :       y(329) = 0.7439366703571565d-054
     483            8 :       y(330) = 0.1000000000000000d+001
     484            8 :       y(331) = 0.1542770387822259d-055
     485            8 :       y(332) = 0.1000000000000000d+001
     486            8 :       y(333) = 0.2854454245592573d-057
     487            8 :       y(334) = 0.1000000000000000d+001
     488            8 :       y(335) = 0.4693220411250150d-059
     489            8 :       y(336) = 0.1000000000000000d+001
     490            8 :       y(337) = 0.6828458274546624d-061
     491            8 :       y(338) = 0.1000000000000000d+001
     492            8 :       y(339) = 0.8752952529541412d-063
     493            8 :       y(340) = 0.1000000000000000d+001
     494            8 :       y(341) = 0.9838541433761416d-065
     495            8 :       y(342) = 0.1000000000000000d+001
     496            8 :       y(343) = 0.9649177728609193d-067
     497            8 :       y(344) = 0.1000000000000000d+001
     498            8 :       y(345) = 0.8213596936190817d-069
     499            8 :       y(346) = 0.1000000000000000d+001
     500            8 :       y(347) = 0.6033986647865674d-071
     501            8 :       y(348) = 0.1000000000000000d+001
     502            8 :       y(349) = 0.3802531117966294d-073
     503            8 :       y(350) = 0.1000000000000000d+001
     504            8 :       y(351) = 0.2042261117698575d-075
     505            8 :       y(352) = 0.1000000000000000d+001
     506            8 :       y(353) = 0.9282595096128614d-078
     507            8 :       y(354) = 0.1000000000000000d+001
     508            8 :       y(355) = 0.3543587864454877d-080
     509            8 :       y(356) = 0.1000000000000000d+001
     510            8 :       y(357) = 0.1126779423370979d-082
     511            8 :       y(358) = 0.1000000000000000d+001
     512            8 :       y(359) = 0.2957534367766753d-085
     513            8 :       y(360) = 0.1000000000000000d+001
     514            8 :       y(361) = 0.6344600529877694d-088
     515            8 :       y(362) = 0.1000000000000000d+001
     516            8 :       y(363) = 0.1100279075462365d-090
     517            8 :       y(364) = 0.1000000000000000d+001
     518            8 :       y(365) = 0.1523845293461783d-093
     519            8 :       y(366) = 0.1000000000000000d+001
     520            8 :       y(367) = 0.1662696161555950d-096
     521            8 :       y(368) = 0.1000000000000000d+001
     522            8 :       y(369) = 0.1407578290673998d-099
     523            8 :       y(370) = 0.1000000000000000d+001
     524            8 :       y(371) = 0.9086150803567186d-103
     525            8 :       y(372) = 0.1000000000000000d+001
     526            8 :       y(373) = 0.4384339596163745d-106
     527            8 :       y(374) = 0.1000000000000000d+001
     528            8 :       y(375) = 0.1545482064392824d-109
     529            8 :       y(376) = 0.1000000000000000d+001
     530            8 :       y(377) = 0.3874172613928345d-113
     531            8 :       y(378) = 0.1000000000000000d+001
     532            8 :       y(379) = 0.6689452219441953d-117
     533            8 :       y(380) = 0.1000000000000000d+001
     534            8 :       y(381) = 0.7655680935317283d-121
     535            8 :       y(382) = 0.1000000000000000d+001
     536            8 :       y(383) = 0.5538543899545850d-125
     537            8 :       y(384) = 0.1000000000000000d+001
     538            8 :       y(385) = 0.2386173886563501d-129
     539            8 :       y(386) = 0.1000000000000000d+001
     540            8 :       y(387) = 0.5664887497790931d-134
     541            8 :       y(388) = 0.1000000000000000d+001
     542            8 :       y(389) = 0.6671124967149171d-139
     543            8 :       y(390) = 0.1000000000000000d+001
     544            8 :       y(391) = 0.3351973480286951d-144
     545            8 :       y(392) = 0.1000000000000000d+001
     546            8 :       y(393) = 0.5684315818559200d-150
     547            8 :       y(394) = 0.1000000000000000d+001
     548            8 :       y(395) = 0.2142121793294590d-156
     549            8 :       y(396) = 0.1000000000000000d+001
     550            8 :       y(397) = 0.6727117900187205d-164
     551            8 :       y(398) = 0.1000000000000000d+001
     552            8 :       y(399) = 0.0000000000000000d+000
     553            8 :       y(400) = 0.1000000000000000d+001
     554              : 
     555            8 :    end subroutine medakzo_solut
     556              : 
     557              : end module bari_medakzo
        

Generated by: LCOV version 2.0-1